Compare commits
2 Commits
007c96e91b
...
6f037c4a9a
| Author | SHA1 | Date | |
|---|---|---|---|
| 6f037c4a9a | |||
| 7f25dff1d1 |
13
data.py
13
data.py
@@ -4,18 +4,19 @@ import queue
|
||||
|
||||
def startDataWorker(dataset,encoding,batch_size,block_size):
|
||||
data_q = queue.Queue(maxsize=100)
|
||||
t = threading.Thread(target=data_worker, args=(data_q, dataset, encoding, batch_size, block_size), daemon=True)
|
||||
t = threading.Thread(target=dataWorker, args=(data_q, dataset, encoding, batch_size, block_size), daemon=True)
|
||||
t.start()
|
||||
while (1):
|
||||
try:
|
||||
bx, by = data_q.get(timeout=30)
|
||||
except queue.Empty:
|
||||
print("queue empty ...")
|
||||
continue
|
||||
yield (bx,by)
|
||||
|
||||
def dataWorker(q, dataset, encoding, batch_size, block_size):
|
||||
batch_x, batch_y = [], []
|
||||
while(1):
|
||||
while True:
|
||||
for text in dataset["text"]:
|
||||
tokens = encoding.encode(text)
|
||||
for i in range(0, len(tokens)-block_size-1,block_size):
|
||||
@@ -33,7 +34,7 @@ def dataWorker(q, dataset, encoding, batch_size, block_size):
|
||||
batch_x.append(x)
|
||||
batch_y.append(y)
|
||||
|
||||
if len(batch_x) == batch_size:
|
||||
q.put((np.array(batch_x, dtype=np.int32),
|
||||
np.array(batch_y, dtype=np.int32)))
|
||||
batch_x, batch_y = [], []
|
||||
if len(batch_x) == batch_size:
|
||||
q.put((np.array(batch_x, dtype=np.int32),
|
||||
np.array(batch_y, dtype=np.int32)))
|
||||
batch_x, batch_y = [], []
|
||||
|
||||
4
model.py
4
model.py
@@ -58,10 +58,10 @@ class Block:
|
||||
return self
|
||||
|
||||
class Transformer():
|
||||
def __init__(self,vocab_size,embed_size,n_heads,n_blocks,max_len):
|
||||
def __init__(self,vocab_size,embed_size,n_heads,n_blocks,block_size):
|
||||
self.tok_embed = nn.Embedding(vocab_size,embed_size)
|
||||
self.pos_embed = nn.Embedding(block_size,embed_size)
|
||||
self.pos_idx = Tensor.arange(max_len, requires_grad=False)
|
||||
self.pos_idx = Tensor.arange(block_size, requires_grad=False)
|
||||
|
||||
self.blocks = [Block(embed_size,n_heads) for _ in range(n_blocks)]
|
||||
self.norm = nn.RMSNorm(embed_size)
|
||||
|
||||
20
optm.py
20
optm.py
@@ -1,16 +1,18 @@
|
||||
from tinygrad import Tensor
|
||||
from tinygrad import Tensor,nn
|
||||
import math
|
||||
|
||||
class CosineLR:
|
||||
def __init__(self,optm,totalSteps,minlr):
|
||||
def __init__(self,optm,totalSteps,maxlr,minlr):
|
||||
self.optm = optm
|
||||
self.maxlr = optm.lr
|
||||
self.maxlr = maxlr
|
||||
self.minlr = minlr
|
||||
self.totalSteps = totalSteps
|
||||
self.steps = 0
|
||||
|
||||
def step(self):
|
||||
self.optm.lr = self.minlr + 0.5 * (self.maxlr - self.minlr) * (1 + math.cos((step / self.totalSteps) * math.pi))
|
||||
lr = self.minlr + 0.5 * (self.maxlr - self.minlr) * (1 + math.cos((self.steps / self.totalSteps) * math.pi))
|
||||
for o in self.optm:
|
||||
o.lr = lr
|
||||
self.optm.step()
|
||||
self.steps += 1
|
||||
|
||||
@@ -18,11 +20,11 @@ class CosineLR:
|
||||
self.optm.zero_grad()
|
||||
|
||||
|
||||
def llmOptimizer(params,steps,minlr):
|
||||
def llmOptimizer(params,steps,maxlr,minlr):
|
||||
muon_params = [p for p in params if len(p.shape) >= 2]
|
||||
adamw_params = [p for p in params if len(p.shape) < 2]
|
||||
|
||||
o1 = nn.optim.Muon(muon_params, lr=hypr["starting_lr"])
|
||||
o2 = nn.optim.AdamW(adamw_params, lr=hypr["starting_lr"])
|
||||
optimizer = nn.optim.OptimizerGroup([o1,o2])
|
||||
return CosineLR(optimizer,steps,minlr)
|
||||
o1 = nn.optim.Muon(muon_params, lr=maxlr)
|
||||
o2 = nn.optim.AdamW(adamw_params, lr=maxlr)
|
||||
optimizer = nn.optim.OptimizerGroup(o1,o2)
|
||||
return CosineLR(optimizer,steps,maxlr,minlr)
|
||||
|
||||
77
train.py
Normal file
77
train.py
Normal file
@@ -0,0 +1,77 @@
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from tinygrad import Tensor,TinyJit,Device,nn
|
||||
from tinygrad.nn.state import get_state_dict
|
||||
from model import Transformer
|
||||
from transformers import AutoTokenizer
|
||||
from datasets import load_dataset
|
||||
from tqdm import tqdm
|
||||
import optm
|
||||
import data
|
||||
import log
|
||||
|
||||
hypr = {
|
||||
"embed_size": 256,
|
||||
"n_heads": 4,
|
||||
"n_blocks": 4,
|
||||
"block_size": 256,
|
||||
"batch_size": 16,
|
||||
"starting_lr": 3e-4,
|
||||
"minimum_lr": 3e-5,
|
||||
"warmup": 1_000,
|
||||
"steps": 5_000,
|
||||
"encoding": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
||||
"dataset": "HuggingFaceTB/smollm-corpus",
|
||||
"subset": "cosmopedia-v2",
|
||||
}
|
||||
|
||||
print(Device.DEFAULT)
|
||||
|
||||
#for loging
|
||||
loger = ThreadPoolExecutor(max_workers=2)
|
||||
|
||||
dataset = load_dataset(hypr["dataset"],
|
||||
hypr["subset"],
|
||||
split="train",
|
||||
streaming=True)
|
||||
encoding = AutoTokenizer.from_pretrained(hypr["encoding"])
|
||||
hypr["vocab_size"] = encoding.vocab_size
|
||||
model = Transformer(hypr["vocab_size"],hypr["embed_size"],hypr["n_heads"],hypr["n_blocks"],hypr["block_size"])
|
||||
batch = data.startDataWorker(dataset,encoding,hypr["batch_size"],hypr["block_size"])
|
||||
|
||||
params = nn.state.get_parameters(model)
|
||||
optimizer = optm.llmOptimizer(params,hypr["steps"],hypr["starting_lr"],hypr["minimum_lr"])
|
||||
|
||||
@TinyJit
|
||||
def step(x,y):
|
||||
optimizer.zero_grad()
|
||||
|
||||
logits = model(x)
|
||||
B,T,C = logits.shape
|
||||
logits = logits.view(B*T,C)
|
||||
y = y.view(B*T)
|
||||
loss = logits.cross_entropy(y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
return loss
|
||||
|
||||
Tensor.training=True
|
||||
bar = tqdm(range(hypr["steps"]))
|
||||
|
||||
for steps in bar:
|
||||
nx, ny = next(batch)
|
||||
x = Tensor(nx, device=Device.DEFAULT).realize()
|
||||
y = Tensor(ny, device=Device.DEFAULT).realize()
|
||||
loss = step(x, y)
|
||||
if steps % 10 == 0:
|
||||
l = loss.numpy()
|
||||
loger.submit(log.logLoss, steps, l)
|
||||
bar.set_postfix(loss= f"{l:.4f}")
|
||||
if steps % 500 == 0:
|
||||
loss.realize()
|
||||
m = get_state_dict(model)
|
||||
log.logModel(steps,m)
|
||||
#TODO non sycronus safetensor loging
|
||||
#loger.submit(log.logModel,steps,m)
|
||||
|
||||
loger.shutdown(wait=True)
|
||||
Reference in New Issue
Block a user