Quick training script
This commit is contained in:
77
train.py
Normal file
77
train.py
Normal file
@@ -0,0 +1,77 @@
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from tinygrad import Tensor,TinyJit,Device,nn
|
||||
from tinygrad.nn.state import get_state_dict
|
||||
from model import Transformer
|
||||
from transformers import AutoTokenizer
|
||||
from datasets import load_dataset
|
||||
from tqdm import tqdm
|
||||
import optm
|
||||
import data
|
||||
import log
|
||||
|
||||
hypr = {
|
||||
"embed_size": 256,
|
||||
"n_heads": 4,
|
||||
"n_blocks": 4,
|
||||
"block_size": 256,
|
||||
"batch_size": 16,
|
||||
"starting_lr": 3e-4,
|
||||
"minimum_lr": 3e-5,
|
||||
"warmup": 1_000,
|
||||
"steps": 5_000,
|
||||
"encoding": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
||||
"dataset": "HuggingFaceTB/smollm-corpus",
|
||||
"subset": "cosmopedia-v2",
|
||||
}
|
||||
|
||||
print(Device.DEFAULT)
|
||||
|
||||
#for loging
|
||||
loger = ThreadPoolExecutor(max_workers=2)
|
||||
|
||||
dataset = load_dataset(hypr["dataset"],
|
||||
hypr["subset"],
|
||||
split="train",
|
||||
streaming=True)
|
||||
encoding = AutoTokenizer.from_pretrained(hypr["encoding"])
|
||||
hypr["vocab_size"] = encoding.vocab_size
|
||||
model = Transformer(hypr["vocab_size"],hypr["embed_size"],hypr["n_heads"],hypr["n_blocks"],hypr["block_size"])
|
||||
batch = data.startDataWorker(dataset,encoding,hypr["batch_size"],hypr["block_size"])
|
||||
|
||||
params = nn.state.get_parameters(model)
|
||||
optimizer = optm.llmOptimizer(params,hypr["steps"],hypr["starting_lr"],hypr["minimum_lr"])
|
||||
|
||||
@TinyJit
|
||||
def step(x,y):
|
||||
optimizer.zero_grad()
|
||||
|
||||
logits = model(x)
|
||||
B,T,C = logits.shape
|
||||
logits = logits.view(B*T,C)
|
||||
y = y.view(B*T)
|
||||
loss = logits.cross_entropy(y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
return loss
|
||||
|
||||
Tensor.training=True
|
||||
bar = tqdm(range(hypr["steps"]))
|
||||
|
||||
for steps in bar:
|
||||
nx, ny = next(batch)
|
||||
x = Tensor(nx, device=Device.DEFAULT).realize()
|
||||
y = Tensor(ny, device=Device.DEFAULT).realize()
|
||||
loss = step(x, y)
|
||||
if steps % 10 == 0:
|
||||
l = loss.numpy()
|
||||
loger.submit(log.logLoss, steps, l)
|
||||
bar.set_postfix(loss= f"{l:.4f}")
|
||||
if steps % 500 == 0:
|
||||
loss.realize()
|
||||
m = get_state_dict(model)
|
||||
log.logModel(steps,m)
|
||||
#TODO non sycronus safetensor loging
|
||||
#loger.submit(log.logModel,steps,m)
|
||||
|
||||
loger.shutdown(wait=True)
|
||||
Reference in New Issue
Block a user