Compare commits
6 Commits
df4cdc8e25
...
bfdcc8311f
| Author | SHA1 | Date | |
|---|---|---|---|
| bfdcc8311f | |||
| 43b64e6ca3 | |||
| 6e0b3882bc | |||
| b076a0d123 | |||
| 579b37cd70 | |||
| 64e66260ec |
1
.gitignore
vendored
1
.gitignore
vendored
@ -3,3 +3,4 @@
|
||||
/data/
|
||||
/music.safetensors
|
||||
/data.npz
|
||||
*.safetensors
|
||||
|
||||
19
data.py
19
data.py
@ -6,7 +6,15 @@ import mlflow
|
||||
|
||||
SAMPLE_RATE = 22050
|
||||
|
||||
#@mlflow.trace
|
||||
def spec_to_audio(spec):
|
||||
"""
|
||||
Convert a normalized mel-spectrogram back to audio.
|
||||
"""
|
||||
spec = (spec * 80) - 80
|
||||
spec = librosa.db_to_amplitude(spec)*80
|
||||
audio = librosa.feature.inverse.mel_to_audio(spec,sr=SAMPLE_RATE)
|
||||
return audio
|
||||
|
||||
def process_file(file_path):
|
||||
"""
|
||||
Load 10 second chunks single song.
|
||||
@ -22,15 +30,9 @@ def process_file(file_path):
|
||||
end = start_pos + size
|
||||
if end <= sample_len:
|
||||
chunk = y[start_pos:end]
|
||||
chunk = librosa.feature.melspectrogram(y=chunk, sr=SAMPLE_RATE)
|
||||
chunk = ((librosa.amplitude_to_db(chunk,ref=np.max)+80)/80)
|
||||
|
||||
#chunk = librosa.feature.melspectrogram(y=chunk,sr=SAMPLE_RATE)
|
||||
#chunk = ((librosa.amplitude_to_db(chunk,ref=np.max)+40)/40)
|
||||
file_chunks.append(chunk)
|
||||
return file_chunks
|
||||
|
||||
#@mlflow.trace
|
||||
def load():
|
||||
"""
|
||||
Load 10 second chunks of songs.
|
||||
@ -44,9 +46,6 @@ def load():
|
||||
audio.extend(l)
|
||||
return audio
|
||||
|
||||
|
||||
|
||||
##DEP
|
||||
def audio_split(audio):
|
||||
"""
|
||||
Split 10 seconds of audio to 2 5 second clips
|
||||
|
||||
@ -1,14 +1,14 @@
|
||||
import data
|
||||
import numpy as np
|
||||
|
||||
x = data.load()
|
||||
x,y = data.dataset(data.load())
|
||||
size=len(x)
|
||||
print(size)
|
||||
|
||||
x_np = np.stack(x)
|
||||
x_np = np.expand_dims(x_np, axis=1)
|
||||
|
||||
#y_np = np.stack(y)
|
||||
#y_np = np.expand_dims(y_np, axis=1)
|
||||
y_np = np.stack(y)
|
||||
y_np = np.expand_dims(y_np, axis=1)
|
||||
|
||||
np.savez_compressed("data",x_np)
|
||||
np.savez_compressed("data",x_np,y_np)
|
||||
|
||||
59
model.py
59
model.py
@ -1,31 +1,41 @@
|
||||
from tinygrad import Tensor, nn
|
||||
|
||||
class gen:
|
||||
def __init__(self, input_channels=1, height=128, width=431, latent_dim=64):
|
||||
def __init__(self, input_channels=1, height=128, width=216, latent_dim=1024):
|
||||
self.height = height
|
||||
self.width = width
|
||||
self.latent_dim = latent_dim
|
||||
|
||||
self.w = width // 4
|
||||
self.h = height // 4
|
||||
self.h = 32 # Output height after 2 strides
|
||||
self.w = 108 # Output width after 2 strides
|
||||
self.flattened_size = 128 * self.h * self.w
|
||||
self.w = width // 8
|
||||
self.h = height // 8
|
||||
self.flattened_size = 256 * self.h * self.w
|
||||
|
||||
self.num_tokens = 16
|
||||
self.dim_per_token = self.latent_dim // self.num_tokens
|
||||
|
||||
|
||||
self.e1 = nn.Conv2d(input_channels, 64, kernel_size=3, stride=2, padding=1)
|
||||
self.e2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
|
||||
self.e3 = nn.Conv2d(128,256, kernel_size=3,stride=2,padding=1)
|
||||
|
||||
|
||||
self.el = nn.Linear(self.flattened_size, self.latent_dim)
|
||||
|
||||
self.q = nn.Linear(self.latent_dim,self.latent_dim)
|
||||
self.k = nn.Linear(self.latent_dim,self.latent_dim)
|
||||
self.v = nn.Linear(self.latent_dim,self.latent_dim)
|
||||
self.q = nn.Linear(self.dim_per_token,self.dim_per_token)
|
||||
self.k = nn.Linear(self.dim_per_token,self.dim_per_token)
|
||||
self.v = nn.Linear(self.dim_per_token,self.dim_per_token)
|
||||
self.norm1 = nn.LayerNorm(self.dim_per_token)
|
||||
|
||||
ffn_dim = self.dim_per_token * 4
|
||||
self.ffn1 = nn.Linear(self.dim_per_token, ffn_dim)
|
||||
self.ffn2 = nn.Linear(ffn_dim, self.dim_per_token)
|
||||
self.norm2 = nn.LayerNorm(self.dim_per_token)
|
||||
|
||||
self.dl = nn.Linear(self.latent_dim, self.flattened_size)
|
||||
|
||||
self.d1 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
|
||||
self.d2 = nn.ConvTranspose2d(64, input_channels, kernel_size=3, stride=2, padding=1, output_padding=1)
|
||||
self.d1 = nn.ConvTranspose2d(256,128,kernel_size=3,stride=2,padding=1,output_padding=1)
|
||||
self.d2 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
|
||||
self.d3 = nn.ConvTranspose2d(64, input_channels, kernel_size=3, stride=2, padding=1, output_padding=1)
|
||||
|
||||
def __call__(self, x: Tensor) -> Tensor:
|
||||
y, shape = self.encode(x)
|
||||
@ -35,26 +45,37 @@ class gen:
|
||||
def encode(self, x: Tensor):
|
||||
x = self.e1(x).leakyrelu()
|
||||
x = self.e2(x).leakyrelu()
|
||||
x = self.e3(x).leakyrelu()
|
||||
b, c, h, w = x.shape
|
||||
|
||||
flattened_size = c * h * w
|
||||
|
||||
|
||||
x = x.reshape(shape=(b, flattened_size))
|
||||
z = self.el(x)
|
||||
|
||||
# reshape to multi-token: (batch, num_tokens, dim_per_token)
|
||||
z = z.reshape(shape=(b, self.num_tokens, self.dim_per_token))
|
||||
return z, (c, h, w)
|
||||
|
||||
def atten(self, x: Tensor):
|
||||
q = self.q(x).relu()
|
||||
k = self.k(x).relu()
|
||||
v = self.v(x).relu()
|
||||
return q.scaled_dot_product_attention(k,v)
|
||||
q = self.q(x)
|
||||
k = self.k(x)
|
||||
v = self.v(x)
|
||||
attn = q.scaled_dot_product_attention(k, v)
|
||||
x = self.norm1(x+attn)
|
||||
|
||||
ffn = self.ffn1(x).relu()
|
||||
ffn = self.ffn2(ffn)
|
||||
x = self.norm2(x+ffn)
|
||||
|
||||
return x
|
||||
|
||||
def decode(self, z: Tensor, shape):
|
||||
z = z.reshape(shape=(z.shape[0], -1))
|
||||
x = self.dl(z).leakyrelu()
|
||||
x = x.reshape(shape=(-1, 128, self.h, self.w))
|
||||
x = x.reshape(shape=(-1, 256, self.h, self.w))
|
||||
x = self.d1(x).leakyrelu()
|
||||
x = self.d2(x).sigmoid()
|
||||
x = self.d2(x).leakyrelu()
|
||||
x = self.d3(x).sigmoid()
|
||||
|
||||
# Crop or pad to match input size
|
||||
out_h, out_w = x.shape[2], x.shape[3]
|
||||
|
||||
43
run.py
Normal file
43
run.py
Normal file
@ -0,0 +1,43 @@
|
||||
import numpy as np
|
||||
import random
|
||||
import time
|
||||
from tinygrad import Tensor, nn
|
||||
from tinygrad.nn.state import safe_load, load_state_dict
|
||||
import librosa
|
||||
import sounddevice as sd
|
||||
from model import gen
|
||||
from data import spec_to_audio
|
||||
|
||||
SAMPLE_RATE = 22050
|
||||
|
||||
def load_model(filepath="model.safetensors"):
|
||||
"""Loads the model structure and weights."""
|
||||
model = gen()
|
||||
state_dict = safe_load(filepath)
|
||||
load_state_dict(model, state_dict)
|
||||
return model
|
||||
|
||||
def load_data(filepath="data.npz"):
|
||||
"""Loads the pre-processed spectrogram data."""
|
||||
print(f"Loading data from {filepath}...")
|
||||
data = np.load(filepath)
|
||||
x = data["arr_0"]
|
||||
return x
|
||||
|
||||
def play_spec(spec,i):
|
||||
"""Converts a spectrogram numpy array to audio and plays it."""
|
||||
audio = spec_to_audio(spec)
|
||||
sd.wait()
|
||||
print(f"chunk:{i}")
|
||||
sd.play(audio, samplerate=SAMPLE_RATE)
|
||||
|
||||
def run_prediction_loop(model, data_x):
|
||||
current_spect = data_x[0:1]
|
||||
for i in range(10):
|
||||
play_spec(current_spect[0][0],i)
|
||||
current_spect = model(Tensor(current_spect)).numpy()
|
||||
|
||||
if __name__ == "__main__":
|
||||
model = load_model()
|
||||
data_x = load_data()
|
||||
run_prediction_loop(model, data_x)
|
||||
8
shell.nix
Normal file
8
shell.nix
Normal file
@ -0,0 +1,8 @@
|
||||
{pkgs ? import <nixpkgs> {}}:
|
||||
with pkgs;
|
||||
mkShell rec {
|
||||
packages = [python3 jupyter-all python3Packages.librosa python3Packages.tinygrad python3Packages.numpy python3Packages.mlflow python3Packages.tqdm python3Packages.sounddevice];
|
||||
nativeBuildInputs = [];
|
||||
buildInputs = [];
|
||||
LD_LIBRARY_PATH = lib.makeLibraryPath buildInputs;
|
||||
}
|
||||
45
train.py
45
train.py
@ -1,34 +1,34 @@
|
||||
import mlflow
|
||||
import numpy as np
|
||||
from tinygrad import Device,Tensor,nn,TinyJit
|
||||
from tinygrad.nn.state import safe_save, get_state_dict
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
import show
|
||||
from model import gen
|
||||
from tqdm import tqdm
|
||||
|
||||
BATCH_SIZE = 16
|
||||
EPOCHS = 100
|
||||
LEARNING_RATE = 1e-5
|
||||
LEARNING_RATE = 3e-4
|
||||
print(Device.DEFAULT)
|
||||
mdl = gen()
|
||||
opt = nn.optim.AdamW(nn.state.get_parameters(mdl), lr=LEARNING_RATE)
|
||||
volume = 0.1
|
||||
|
||||
def spec_loss(pred, target, eps=1e-6):
|
||||
# spectral convergence
|
||||
sc = ((target - pred).square().sum()) ** 0.5 / ((target.square().sum()) ** 0.5 + eps)
|
||||
# log magnitude difference
|
||||
log_mag = ((target.abs() + eps).log() - (pred.abs() + eps).log()).abs().mean()
|
||||
return sc + log_mag
|
||||
return 0.1*sc + 1.0*log_mag + 0.1*(pred - target).abs().mean()
|
||||
|
||||
|
||||
@TinyJit
|
||||
def step_gen(x):
|
||||
def step_gen(x,y):
|
||||
Tensor.training = True
|
||||
noise = Tensor.rand_like(x).tanh()
|
||||
y = x+(noise*volume)
|
||||
y = y.clamp(0,1)
|
||||
loss = spec_loss(mdl(y),x)
|
||||
z = mdl(x)
|
||||
loss = spec_loss(z,y)
|
||||
#loss = (y - z).abs().mean()
|
||||
opt.zero_grad()
|
||||
loss.backward()
|
||||
opt.step()
|
||||
@ -36,8 +36,8 @@ def step_gen(x):
|
||||
|
||||
print("loading")
|
||||
x = np.load("data.npz")["arr_0"]
|
||||
#x= x[0:64]
|
||||
run_name = f"tinygrad_autoencoder_{int(time.time())}"
|
||||
y = np.load("data.npz")["arr_1"]
|
||||
run_name = f"vae_{int(time.time())}"
|
||||
mlflow.set_tracking_uri("http://127.0.0.1:5000")
|
||||
mlflow.start_run()
|
||||
mlflow.log_params({"batch_size": BATCH_SIZE, "epochs": EPOCHS, "lr": LEARNING_RATE, "data size":len(x)})
|
||||
@ -45,27 +45,28 @@ mlflow.log_params({"batch_size": BATCH_SIZE, "epochs": EPOCHS, "lr": LEARNING_RA
|
||||
show.logSpec(Tensor(x[0:1]).numpy()[0][0],"default")
|
||||
|
||||
print("training")
|
||||
pl = 0
|
||||
eshape = (BATCH_SIZE, 1, 128, 431)
|
||||
eshape = (BATCH_SIZE, 1, 128, 216)
|
||||
for epoch in range(0,EPOCHS):
|
||||
print(f"\n--- Starting Epoch {epoch} ---\n")
|
||||
loss=0
|
||||
for i in range(0,len(x),BATCH_SIZE):
|
||||
for i in tqdm(range(0,len(x),BATCH_SIZE)):
|
||||
tx=Tensor(x[i:i+BATCH_SIZE])
|
||||
ty=Tensor(y[i:i+BATCH_SIZE])
|
||||
if(tx.shape != eshape):
|
||||
continue
|
||||
loss += step_gen(tx)
|
||||
loss += step_gen(tx,ty)
|
||||
|
||||
loss /= (len(x)/BATCH_SIZE)
|
||||
if epoch%5==0:
|
||||
noise = Tensor.rand_like(Tensor(x[0:1])).tanh()
|
||||
y = Tensor(x[0:1]) + (noise*volume)
|
||||
show.logSpec(mdl(y).numpy()[0][0],epoch)
|
||||
if(pl - loss < 0.03 and epoch > 25):
|
||||
show.logSpec(y.numpy()[0][0],f"volume_{volume}")
|
||||
volume *= 2
|
||||
pl = loss
|
||||
show.logSpec(mdl(Tensor(x[0:1])).numpy()[0][0],epoch)
|
||||
if epoch%15==0:
|
||||
state_dict = get_state_dict(mdl)
|
||||
safe_save(state_dict, f"model_{epoch}.safetensors")
|
||||
show.logSpec(mdl(mdl(mdl(Tensor(y[0:1])))).numpy()[0][0],f"deep_{epoch}")
|
||||
|
||||
mlflow.log_metric("volume", volume, step=epoch)
|
||||
mlflow.log_metric("loss", loss, step=epoch)
|
||||
print(f"loss of {loss}")
|
||||
|
||||
show.logSpec(mdl(Tensor(x[0:1])).numpy()[0][0],EPOCHS)
|
||||
state_dict = get_state_dict(mdl)
|
||||
safe_save(state_dict, "model.safetensors")
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user