simple vae style model

This commit is contained in:
k 2025-11-12 12:10:52 -05:00
parent df4cdc8e25
commit 64e66260ec
4 changed files with 33 additions and 46 deletions

View File

@ -22,15 +22,9 @@ def process_file(file_path):
end = start_pos + size
if end <= sample_len:
chunk = y[start_pos:end]
chunk = librosa.feature.melspectrogram(y=chunk, sr=SAMPLE_RATE)
chunk = ((librosa.amplitude_to_db(chunk,ref=np.max)+80)/80)
#chunk = librosa.feature.melspectrogram(y=chunk,sr=SAMPLE_RATE)
#chunk = ((librosa.amplitude_to_db(chunk,ref=np.max)+40)/40)
file_chunks.append(chunk)
return file_chunks
#@mlflow.trace
def load():
"""
Load 10 second chunks of songs.
@ -44,9 +38,6 @@ def load():
audio.extend(l)
return audio
##DEP
def audio_split(audio):
"""
Split 10 seconds of audio to 2 5 second clips

View File

@ -1,14 +1,14 @@
import data
import numpy as np
x = data.load()
x,y = data.dataset(data.load())
size=len(x)
print(size)
x_np = np.stack(x)
x_np = np.expand_dims(x_np, axis=1)
#y_np = np.stack(y)
#y_np = np.expand_dims(y_np, axis=1)
y_np = np.stack(y)
y_np = np.expand_dims(y_np, axis=1)
np.savez_compressed("data",x_np)
np.savez_compressed("data",x_np,y_np)

View File

@ -1,40 +1,39 @@
from tinygrad import Tensor, nn
class gen:
def __init__(self, input_channels=1, height=128, width=431, latent_dim=64):
def __init__(self, input_channels=1, height=128, width=216, latent_dim=1024):
self.height = height
self.width = width
self.latent_dim = latent_dim
self.w = width // 4
self.h = height // 4
self.h = 32 # Output height after 2 strides
self.w = 108 # Output width after 2 strides
self.flattened_size = 128 * self.h * self.w
self.w = width // 8
self.h = height // 8
self.flattened_size = 256 * self.h * self.w
self.e1 = nn.Conv2d(input_channels, 64, kernel_size=3, stride=2, padding=1)
self.e2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.e3 = nn.Conv2d(128,256, kernel_size=3,stride=2,padding=1)
self.el = nn.Linear(self.flattened_size, self.latent_dim)
self.q = nn.Linear(self.latent_dim,self.latent_dim)
self.k = nn.Linear(self.latent_dim,self.latent_dim)
self.v = nn.Linear(self.latent_dim,self.latent_dim)
self.dl = nn.Linear(self.latent_dim, self.flattened_size)
self.d1 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
self.d2 = nn.ConvTranspose2d(64, input_channels, kernel_size=3, stride=2, padding=1, output_padding=1)
self.d1 = nn.ConvTranspose2d(256,128,kernel_size=3,stride=2,padding=1,output_padding=1)
self.d2 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
self.d3 = nn.ConvTranspose2d(64, input_channels, kernel_size=3, stride=2, padding=1, output_padding=1)
def __call__(self, x: Tensor) -> Tensor:
y, shape = self.encode(x)
z = self.atten(y)
z = y#self.atten(y)
return self.decode(z, shape)
def encode(self, x: Tensor):
x = self.e1(x).leakyrelu()
x = self.e2(x).leakyrelu()
x = self.e3(x).leakyrelu()
b, c, h, w = x.shape
flattened_size = c * h * w
@ -52,9 +51,10 @@ class gen:
def decode(self, z: Tensor, shape):
x = self.dl(z).leakyrelu()
x = x.reshape(shape=(-1, 128, self.h, self.w))
x = x.reshape(shape=(-1, 256, self.h, self.w))
x = self.d1(x).leakyrelu()
x = self.d2(x).sigmoid()
x = self.d2(x).leakyrelu()
x = self.d3(x).sigmoid()
# Crop or pad to match input size
out_h, out_w = x.shape[2], x.shape[3]

View File

@ -8,27 +8,25 @@ from model import gen
BATCH_SIZE = 16
EPOCHS = 100
LEARNING_RATE = 1e-5
LEARNING_RATE = 3e-4
print(Device.DEFAULT)
mdl = gen()
opt = nn.optim.AdamW(nn.state.get_parameters(mdl), lr=LEARNING_RATE)
volume = 0.1
def spec_loss(pred, target, eps=1e-6):
# spectral convergence
sc = ((target - pred).square().sum()) ** 0.5 / ((target.square().sum()) ** 0.5 + eps)
# log magnitude difference
log_mag = ((target.abs() + eps).log() - (pred.abs() + eps).log()).abs().mean()
return sc + log_mag
return 0.1*sc + 1.0*log_mag + 0.1*(pred - target).abs().mean()
@TinyJit
def step_gen(x):
def step_gen(x,y):
Tensor.training = True
noise = Tensor.rand_like(x).tanh()
y = x+(noise*volume)
y = y.clamp(0,1)
loss = spec_loss(mdl(y),x)
z = mdl(x)
loss = spec_loss(z,y)
#loss = (y - z).abs().mean()
opt.zero_grad()
loss.backward()
opt.step()
@ -36,8 +34,8 @@ def step_gen(x):
print("loading")
x = np.load("data.npz")["arr_0"]
#x= x[0:64]
run_name = f"tinygrad_autoencoder_{int(time.time())}"
y = np.load("data.npz")["arr_1"]
run_name = f"vae_{int(time.time())}"
mlflow.set_tracking_uri("http://127.0.0.1:5000")
mlflow.start_run()
mlflow.log_params({"batch_size": BATCH_SIZE, "epochs": EPOCHS, "lr": LEARNING_RATE, "data size":len(x)})
@ -52,20 +50,18 @@ for epoch in range(0,EPOCHS):
loss=0
for i in range(0,len(x),BATCH_SIZE):
tx=Tensor(x[i:i+BATCH_SIZE])
ty=Tensor(y[i:i+BATCH_SIZE])
if(tx.shape != eshape):
continue
loss += step_gen(tx)
loss += step_gen(tx,ty)
loss /= (len(x)/BATCH_SIZE)
if epoch%5==0:
noise = Tensor.rand_like(Tensor(x[0:1])).tanh()
y = Tensor(x[0:1]) + (noise*volume)
show.logSpec(mdl(y).numpy()[0][0],epoch)
if(pl - loss < 0.03 and epoch > 25):
show.logSpec(y.numpy()[0][0],f"volume_{volume}")
volume *= 2
pl = loss
show.logSpec(mdl(Tensor(x[0:1])).numpy()[0][0],epoch)
if epoch%15==0:
state_dict = get_state_dict(mdl)
safe_save(state_dict, f"model_{epoch}.safetensors")
show.logSpec(mdl(mdl(mdl(Tensor(y[0:1])))).numpy()[0][0],f"deep_{epoch}")
mlflow.log_metric("volume", volume, step=epoch)
mlflow.log_metric("loss", loss, step=epoch)
print(f"loss of {loss}")