from tinygrad.nn.state import safe_save import csv import os def logLoss(step, loss): path = "loss.csv" exists = os.path.isfile(path) with open(path, mode='a', newline='') as f: writer = csv.writer(f) if not exists: writer.writerow(['step', 'loss']) writer.writerow([step, float(loss)]) def logModel(step,stateDict): safe_save(stateDict, f"gpt_{step}.safetensors")