Implimented MultiHeadAttention

This commit is contained in:
k
2026-01-06 19:41:12 -05:00
parent c4e5e332ba
commit 77aa0de0eb

View File

@@ -1,12 +1,28 @@
from tinygrad import Tensor,nn,TinyJit
class MultiHeadAttention:
def __init__(self):
pass #TODO
def __call__(self):
pass #TODO
def cast(self):
pass #TODO
def __init__(self,embed_size,n_heads):
assert embed_size % n_heads == 0
self.head_size = embed_size//n_heads
self.n_heads = n_heads
self.qkv = nn.Linear(embed_size, embed_size*3,bias=False)
self.projection = nn.Linear(embed_size, embed_size,bias=False)
def __call__(self,x):
B,T,C=x.shape
q,k,v = self.qkv(x).chunk(3,dim=-1)
q = q.view(B, T, self.n_heads, self.head_size).transpose(1, 2)
k = k.view(B, T, self.n_heads, self.head_size).transpose(1, 2)
v = v.view(B, T, self.n_heads, self.head_size).transpose(1, 2)
#B H T S
out = q.scaled_dot_product_attention(k,v,is_causal=True,dropout_p=0.01)
out = out.transpose(1,2).view(B,T,C)
return self.projection(out)
def cast(self,dtype):
self.qkv.weight = self.qkv.weight.cast(dtype)
self.projection.weight = self.projection.weight.cast(dtype)
return self
class FeedForwardNetwork: