74 lines
1.8 KiB
Python
74 lines
1.8 KiB
Python
import librosa
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from multiprocessing import Pool, cpu_count
|
|
import mlflow
|
|
|
|
SAMPLE_RATE = 22050
|
|
|
|
#@mlflow.trace
|
|
def process_file(file_path):
|
|
"""
|
|
Load 10 second chunks single song.
|
|
"""
|
|
y, sr = librosa.load(file_path, mono=True, sr=SAMPLE_RATE)
|
|
if(not sr == SAMPLE_RATE):
|
|
return []
|
|
size = int(SAMPLE_RATE * 10)
|
|
sample_len = len(y)
|
|
|
|
file_chunks = []
|
|
for start_pos in range(0, sample_len, size):
|
|
end = start_pos + size
|
|
if end <= sample_len:
|
|
chunk = y[start_pos:end]
|
|
#chunk = librosa.feature.melspectrogram(y=chunk,sr=SAMPLE_RATE)
|
|
#chunk = ((librosa.amplitude_to_db(chunk,ref=np.max)+40)/40)
|
|
file_chunks.append(chunk)
|
|
return file_chunks
|
|
|
|
#@mlflow.trace
|
|
def load():
|
|
"""
|
|
Load 10 second chunks of songs.
|
|
"""
|
|
audio = []
|
|
files = list(Path("./data/").glob("*.mp3"))
|
|
#files = files[:12]
|
|
with Pool(cpu_count()) as pool:
|
|
chunk_list = pool.map(process_file, files)
|
|
for l in chunk_list:
|
|
audio.extend(l)
|
|
return audio
|
|
|
|
|
|
|
|
##DEP
|
|
def audio_split(audio):
|
|
"""
|
|
Split 10 seconds of audio to 2 5 second clips
|
|
"""
|
|
size = int(SAMPLE_RATE*5)
|
|
x = audio[:size]
|
|
y = audio[size:size*2]
|
|
|
|
x = librosa.feature.melspectrogram(y=x, sr=SAMPLE_RATE)
|
|
y = librosa.feature.melspectrogram(y=y, sr=SAMPLE_RATE)
|
|
|
|
x = ((librosa.amplitude_to_db(x,ref=np.max)+80)/80)
|
|
y = ((librosa.amplitude_to_db(y,ref=np.max)+80)/80)
|
|
|
|
return x,y
|
|
|
|
def dataset(chunks):
|
|
"""
|
|
convert 10 second chunks to dataset
|
|
"""
|
|
x,y=[],[]
|
|
with Pool(cpu_count()) as pool:
|
|
audio_list = pool.map(audio_split,chunks)
|
|
for (ax,ay) in audio_list:
|
|
x.append(ax)
|
|
y.append(ay)
|
|
return x,y
|