2025-11-12 12:11:57 -05:00

44 lines
1.1 KiB
Python

import numpy as np
import random
import time
from tinygrad import Tensor, nn
from tinygrad.nn.state import safe_load, load_state_dict
import librosa
import sounddevice as sd
from model import gen
from data import spec_to_audio
SAMPLE_RATE = 22050
def load_model(filepath="model.safetensors"):
"""Loads the model structure and weights."""
model = gen()
state_dict = safe_load(filepath)
load_state_dict(model, state_dict)
return model
def load_data(filepath="data.npz"):
"""Loads the pre-processed spectrogram data."""
print(f"Loading data from {filepath}...")
data = np.load(filepath)
x = data["arr_0"]
return x
def play_spec(spec,i):
"""Converts a spectrogram numpy array to audio and plays it."""
audio = spec_to_audio(spec)
sd.wait()
print(f"chunk:{i}")
sd.play(audio, samplerate=SAMPLE_RATE)
def run_prediction_loop(model, data_x):
current_spect = data_x[0:1]
for i in range(10):
play_spec(current_spect[0][0],i)
current_spect = model(Tensor(current_spect)).numpy()
if __name__ == "__main__":
model = load_model()
data_x = load_data()
run_prediction_loop(model, data_x)