from tinygrad import Tensor, nn class Gen: def __init__(self, height=128, width=216, latent_dim=128): self.w = width // 4 self.h = height // 4 self.flat = 128 * self.h * self.w self.ld = latent_dim self.d1 = nn.Linear(latent_dim, self.flat) self.d2 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1) self.d3 = nn.ConvTranspose2d(64, 1, kernel_size=3, stride=2, padding=1, output_padding=1) def __call__(self, noise: Tensor) -> Tensor: x = self.d1(noise).relu() x = x.reshape(noise.shape[0], 128, self.h, self.w) x = self.d2(x).relu() x = self.d3(x) return x.tanh() class Check: def __init__(self, height=128, width=216): self.w = width // 4 self.h = height // 4 self.flat = 128 * self.h * self.w self.e1 = nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1) self.e2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) self.out = nn.Linear(self.flat, 2) def __call__(self, x: Tensor) -> Tensor: x = self.e1(x).relu() x = self.e2(x).relu() x = x.reshape(x.shape[0], -1) return self.out(x).sigmoid()