added transformer block in latenent space

This commit is contained in:
k 2025-11-12 12:13:03 -05:00
parent b076a0d123
commit 6e0b3882bc

View File

@ -10,6 +10,9 @@ class gen:
self.h = height // 8 self.h = height // 8
self.flattened_size = 256 * self.h * self.w self.flattened_size = 256 * self.h * self.w
self.num_tokens = 16
self.dim_per_token = self.latent_dim // self.num_tokens
self.e1 = nn.Conv2d(input_channels, 64, kernel_size=3, stride=2, padding=1) self.e1 = nn.Conv2d(input_channels, 64, kernel_size=3, stride=2, padding=1)
self.e2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) self.e2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
@ -18,6 +21,15 @@ class gen:
self.el = nn.Linear(self.flattened_size, self.latent_dim) self.el = nn.Linear(self.flattened_size, self.latent_dim)
self.q = nn.Linear(self.dim_per_token,self.dim_per_token)
self.k = nn.Linear(self.dim_per_token,self.dim_per_token)
self.v = nn.Linear(self.dim_per_token,self.dim_per_token)
self.norm1 = nn.LayerNorm(self.dim_per_token)
ffn_dim = self.dim_per_token * 4
self.ffn1 = nn.Linear(self.dim_per_token, ffn_dim)
self.ffn2 = nn.Linear(ffn_dim, self.dim_per_token)
self.norm2 = nn.LayerNorm(self.dim_per_token)
self.dl = nn.Linear(self.latent_dim, self.flattened_size) self.dl = nn.Linear(self.latent_dim, self.flattened_size)
@ -27,7 +39,7 @@ class gen:
def __call__(self, x: Tensor) -> Tensor: def __call__(self, x: Tensor) -> Tensor:
y, shape = self.encode(x) y, shape = self.encode(x)
z = y#self.atten(y) z = self.atten(y)
return self.decode(z, shape) return self.decode(z, shape)
def encode(self, x: Tensor): def encode(self, x: Tensor):
@ -37,19 +49,28 @@ class gen:
b, c, h, w = x.shape b, c, h, w = x.shape
flattened_size = c * h * w flattened_size = c * h * w
x = x.reshape(shape=(b, flattened_size)) x = x.reshape(shape=(b, flattened_size))
z = self.el(x) z = self.el(x)
# reshape to multi-token: (batch, num_tokens, dim_per_token)
z = z.reshape(shape=(b, self.num_tokens, self.dim_per_token))
return z, (c, h, w) return z, (c, h, w)
def atten(self, x: Tensor): def atten(self, x: Tensor):
q = self.q(x).relu() q = self.q(x)
k = self.k(x).relu() k = self.k(x)
v = self.v(x).relu() v = self.v(x)
return q.scaled_dot_product_attention(k,v) attn = q.scaled_dot_product_attention(k, v)
x = self.norm1(x+attn)
ffn = self.ffn1(x).relu()
ffn = self.ffn2(ffn)
x = self.norm2(x+ffn)
return x
def decode(self, z: Tensor, shape): def decode(self, z: Tensor, shape):
z = z.reshape(shape=(z.shape[0], -1))
x = self.dl(z).leakyrelu() x = self.dl(z).leakyrelu()
x = x.reshape(shape=(-1, 256, self.h, self.w)) x = x.reshape(shape=(-1, 256, self.h, self.w))
x = self.d1(x).leakyrelu() x = self.d1(x).leakyrelu()